On the rank of incidence matrices in projective Hjelmslev spaces
نویسندگان
چکیده
منابع مشابه
Imbrex geometries
We introduce an axiom on strong parapolar spaces of diameter 2, which arises naturally in the framework of Hjelmslev geometries. This way, we characterize the Hjelmslev-Moufang plane and its relatives (line Grassmannians, certain half-spin geometries and Segre geometries). At the same time we provide a more general framework for a lemma of Cohen, which is widely used to study parapolar spaces. ...
متن کاملSpreads in Projective Hjelmslev Spaces over Finite Chain Rings
We prove a necessary and sufficient condition for the existence of spreads in the projective Hjelmslev geometries PHG Rn 1 R . Further, we give a construction of projective Hjelmslev planes from spreads that generalizes the familiar construction of projective planes from spreads in PG n q .
متن کاملOptimal Arcs in Hjelmslev Spaces of Large Dimension
In this paper, we present various results on arcs in projective threedimensional Hjelmslev spaces over finite chain rings of nilpotency index 2. A table is given containing exact values and bounds for projective arcs in the geometries over the two chain rings with four elements.
متن کاملOn Incidence Matrices of Finite Projective and Affine Spaces
It is welt-known that the rank of each incidence matrix of all points vs. all e-spaces of a finite d-dimensional projective or affine space is the number of points of the geometry, where 1 <_e<-d-1 (see [1], p. 20). In this note we shall generalize this fact: Theorem. Let 0 <-e < f <= d-e-1, and let Me, l be an incidence matrix of all e-spaces vs. all f-spaces of PG(d, q) or AG(d, q). Then the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 73 شماره
صفحات -
تاریخ انتشار 2014